REPORT - LAB S

Name: Puya Fard (pfard@uci.edu)
Course: EECS221-B
Subject: Motion Planning Using ROS (Part 3)

Instructor notes:

mailto:pfard@uci.edu

Objective

This lab provides an introduction to Gazebo capabilities for Robot Simulation, a tool made for
teaching Navigation and Manipulation, making it suitable for robotic applications. This lab pro-
vides a set of examples/exercises for motion planning, focused in the topics of path planning and
low-level control.

Experiment

Problem : Full Path Planning Stack
We will first set up VM provided to us by lab manual and run it using VMware
e first need to download UTM, choose the package corresponding to your operating
system. Download the LAB3 MAC M1 file and open it with UTM to import the VM.
Then we will run our gazebo bot command and start the robot by clicking the play button.

>>ros2 launch turtlebot4_ignition_bringup turtlebot4 _ignition.launch.py model:=lite

Then once ran, we will do the following steps:
1. Open a terminal “Terminal 1~ and run the node called Motion_Planner

>>ros2 run TurtleBot Motion_Planner
2. Open another terminal “Terminal 2 and run a node called rrt_node
>> ros2 run TurtleBot rrt_node
3. Open another terminal “Terminal 3" and run a node called PID_Controller
>>ros2 run TurtleBot PID_Controller
Now we have successfully run all nodes required in order to run our full path planning stack. Our
program will generate a plot of our trajectory, the gazebo won’t be moving yet. Once we close

the plot by clicking the x button, the gazebo will start moving through the trajectory drawn by
our rrt_node.

We can further analyze the flowchart of our system on the fig. 1 below:

,---/map

Itrajectorylff \ Istart_goal

N\

Yy

Ntarget_pose -

Ireference_pose /emd_vel

Fig 1:System flowchart

Approach Breakdown:

1. In this system, our code heavily relies on our Motion_Planner node. Motion Planner will ask
users to input (X,y) coordinates and it will send them to our RRT node via /start_goal topic.

2. RRT node will generate the path starting from coordinates (0,0) to goal (x,y) set by the user
on an empty 100x100 np.matrix map with step size 5 and resolution 1. It will publish the
coordinates to /trajectory topic and will also output the path generated on a table for debugging
purposes.

3. Motion Planner will take the coordinates generated by our RRT node and publish them on
topic /reference_pose for it to be used in our PID_Controller node.

4. PID_Controller will adjust the velocity and angle of our gazebo bot accordingly in order to
follow the trajectory drawn by the rrt_node via /cmd_vel topic.

Explaining Code (Motion Planner)
#!/usr/bin/env python3

import rclpy

from rclpy.node import Node

from std msgs.msg import Float64MultiArray
from nav _msgs.msg import Odometry

from geometry msgs.msg import Point

from math import sqgrt, atan2
class MotionPlanner (Node) :

def init (self):

super (). init ('motion planner')

self.current position = None

self.target position = None

self.trajectory = []
self.trajectory index = 0
self.reached goal = False

self.start goal pub = self.create publisher (Float64MultiArray, '/start goal', 10)
self.reference pose pub = self.create publisher (Float64MultiArray, '/reference pose',
10)

self.target pose pub = self.create publisher(Float64MultiArray, '/target pose', 10)
self.subscription odom = self.create subscription (Odometry, '/odom',

self.odom callback, 10)

self.subscription trajectory = self.create subscription(Floaté64MultiArray,

'/trajectory', self.trajectory callback, 10)

self.timer = self.create timer (0.1, self.timer callback)

In the code given above, we will start by an initialization process that our node will subscribe to
and publish to the required topics such as /start_goal, /reference pose, /target pose, /odom and
/trajectory.

def get_user_coordinates(self):

while rclpy.ok():

try:

goal x = float (input ("Enter goal x coordinate (meters): "))

goal y = float (input ("Enter goal y coordinate (meters): "))

self.target position = (goal x, goal y)

if self.current position:

self.publish start goal(self.current position[0], self.current position[l], goal x,
goal y)

self.publish target pose(goal x, goal vy)

except ValueError:
self.get logger().error ("Invalid input. Please enter numeric values for coordinates.")
except rclpy.exceptions.ROSInterruptException:

break

In the code given above, motion planner will ask user to input x and y coordinates then publish
them in topic /start _goal and /target pose.

def odom callback(self, msg):
self.current position = (msg.pose.pose.position.x, msg.pose.pose.position.y,
self.quaternion to euler (msg.pose.pose.orientation))

self.get logger () .info (f"Updated current position: {self.current position}")

In the code given above, motion planner will get gazebo bots current position as starting x and y
coordinates.

if not self.target position:

self.getiusericoordinates()

def trajectory callback(self, msqg):
self.trajectory = []

data = msg.data

for i in range (0, len(data), 2):
self.trajectory.append((datal[i], datali + 11))
self.trajectory index = 0

self.reached goal = False

self.get logger () .info ("Received trajectory:")
for point in self.trajectory:

self.get logger () .info(str(point))

In the code given above, motion planner will log the data collected by trajectory received.

def timer callback(self):

if self.trajectory and not self.reached goal:

if self.is close to goal(self.trajectoryl[self.trajectory index]):
self.trajectory index += 1

if self.trajectory index < len(self.trajectory):

self.publish reference pose(self.trajectory[self.trajectory index])
else:

self.get logger () .info ("Reached the final goal.")

self.reached goal = True

else:

self.publish reference pose(self.trajectory[self.trajectory index])

def publish start goal (self, start x, start y, goal x, goal y):

start goal msg = Float64MultiArray ()

start goal msg.data = [start x, start y, goal x, goal y]

self.start goal pub.publish(start goal msg)

self.get logger().info (f"Published start ({start x}, {start y}) and goal ({goal x},

{goal y}) coordinates.")

def publish reference pose(self, pose):
reference pose msg = Float64MultiArray ()
reference pose msg.data = [pose[0], pose[l]]
self.reference pose pub.publish (reference pose msg)

self.get logger().info (f"Published reference pose ({pose[0]}, {pose[l]l}).")

In the code given above, node will publish the reference pose x and y to /reference pose topic.

def publish target pose(self, goal x, goal y):

target pose msg = Float64MultiArray ()

target pose msg.data = [goal x, goal y]

self.target pose pub.publish(target pose msq)

self.get logger().info (f"Published target pose ({goal x}, {goal y}).")

In the code given above, node will publish the target pose our goal coordinates.

def is close to goal(self, goal, threshold=0.1):

if not self.current position:

return False

distance = sqgrt((self.current position[0] - goal[0]) ** 2 + (self.current position[1l]
- goalll]) ** 2)

return distance < threshold

def quaternion to euler(self, orientation):

wwn

Convert quaternion to euler angles.

wnn

X, y, z, w = orientation.x, orientation.y, orientation.z, orientation.w
t0 = +2.0 * (w * x + y * z)

tl = +1.0 - 2.0 * (x * x + y * vy)

roll x = atan2(t0, tl)

t2 = +2.0 * (w * v - z * x)

t2 = +1.0 if t2 > +1.0 else t2

t2 = -1.0 if t2 < -1.0 else t2
pitch y = sqgrt(l - t2 * t2) # asin(t2)

t3 = +2.0 * (w * z + x * vy)

td = +1.0 - 2.0 * (y *y + z * z)
yaw_z = atan2(t3, t4)

In the code given above, node converts a quaternion orientation to Euler angles (yaw in this
case).

return yaw z # in radians

def main (args=None) :

rclpy.init (args=args)

motion planner = MotionPlanner ()

rclpy.spin(motion planner)

motion_planner.destroy_node()

rclpy.shutdown ()

if name == ' main_ ':

main ()

Explaining Code (rrt_node)

import rclpy

from rclpy.node import Node

from nav_msgs.msg import OccupancyGrid
from std msgs.msg import Float64MultiArray
import numpy as np

import random

import math

import matplotlib.pyplot as plt

class RRTNode (Node) :

def init (self):

super (). init ('rrt node')

Subscription to start goal topic

self.subscription start goal = self.create subscription/(
Float64MultiArray, '/start goal', self.start goal callback, 10)

Publisher to trajectory topic once you connect start and goal points
self.trajector publisher = self.create publisher (

Float64MultiArray, '/trajectory', 50)

Global variables

self.resolution = 1 # Assuming each cell represents 1 unit of space
self.origin = [0, 0] # Assuming the map origin is at (0, 0)

self.map width = 8 # 8x8 map

self.map height = 8

self.map data = np.zeros((self.map height, self.map width), dtype=int) # 8x8 empty map
self.map img = None

print (self.map data)

In the code given above, we will initialize our node via its constructor, and then we will make
sure that we generate an empty map to be used for the trajectory. The empty map will contain
np.zeros matrix size 8x8 with resolution 1.

Furthermore, our node will subscribe to topic /start_goal and publish to /trajectory to be used by
our motion planner node.

def start goal callback(self, msqg):

print ("Got points to calculate")

Get start and goal coordinates from /start goal topic subscription

x start real, y start real, x goal real, y goal real = msg.data

x start index, y start index = self.get index from coordinates(x start real,

y start real)

x goal index, y goal index = self.get index from coordinates(x goal real, y goal real)

start, goal = ([x start index, y start index], [x goal index, y goal index])

traj msg = Float64MultiArray ()
print ("About to find path")
path = self.rrt (start, goal)
print ("Came Back from path\n")

print (path)

if path is not None:

flattened path = [coord for point in path for coord in point]
print (f"Flattened path {flattened path}")

traj msg.data = [float(value) for value in flattened path]
print (f"traj msg.data {traj msg.data}")
self.plot path map (path)

else:

traj msg.data = []

print (f"publishing {traj msg}\n")

self.trajector publisher.publish(traj msqg)

print (f"Successfully published {traj msg}\n")

def get index from coordinates(self, x real, y real):
X index = int(round(x real / self.resolution))
y index = int (round(y real / self.resolution))

return x index, y index
def rrt(self, start, goal, max iter=10000, step size=10):
nodes = [start]

parents = {tuple(start): None}

for i in range(max iter):

rand point = (random.randint (0, self.map data.shape[l] - 1),
random.randint (0, self.map data.shape[0] - 1))

nearest node = self.find nearest node(nodes, rand point)

new node = self.extend towards (nearest node, rand_point, step_size)

if new node is not None:
nodes.append (new_node)

parents[tuple (new node)] = nearest node

if self.distance (new_node, goal) < step size:
parents[tuple(goal)] = new node

path = self.reconstruct path(parents, start, goal)
print ("Path found:")

print (path)

print ("Map after path discovery:")

print (self.map data)

return path

return None

def find nearest node(self, nodes, point):
distances = [(self.distance(node, point), node) for node in nodes]

return min (distances, key=lambda x: x[0]) [1]

def extend towards(self, node, target, step size):
direction = (target[0] - node[0], target[l] - nodel[l])

distance = self.distance (node, target)

if distance < step size:

return target

unit vector = (direction[0] / distance, direction([1l] / distance)
new node = (int(node[0] + unit vector[0] * step size),

int (node[1] + unit vector[l] * step size))

if self.is free(new node) :
return new node
else:

return None

def is free(self, point):

X, y = point

if 0 <= x < self.map data.shape[l] and 0 <= y < self.map data.shape[0]:
return True # All points are free in the empty world

return False

10

def distance(self, pointl, point2):
return math.sqrt ((pointl[0] - point2[0])**2 + (pointl[l] - point2[1])**2)

def reconstruct path(self, parents, start, goal):

path = [goal]
current node = goal
while current node != start:

current node = parents[tuple (current node)]
path.append (current node)

print (f"Visiting node: {current node}")

path.reverse ()

return path

def plot path map(self, path):

plt.imshow (self.map data, cmap='binary', origin='lower')
path = np.array (path)

plt.plot (pathl:, 0], pathl:, 1], 'r', linewidth=2)
plt.colorbar ()

plt.title('Occupancy Grid with Path')

plt.xlabel ('X (cells)")

plt.ylabel ('Y (cells)'")

plt.show ()

This code given above will make sure to plot the trajectory drawn by our rrt_node.

def main (args=None) :
rclpy.init (args=args)
rrt node = RRTNode ()
rclpy.spin(rrt node)
rrt node.destroy node ()

rclpy.shutdown ()

1 v .

if name == ' main

main ()

Finally, this node is a template used from our previous lab4, which will draw out a trajectory
path for the given coordinates and will be plotted for the user to debug and analyze the drawn out
path.

11

Analysis

Fig 2: Full autonomous system 1

On the code above, we can analyze the entire system running simultaneously. We have our
nodes Motion_Planner, rrt_node, and PID_Controller running along with our Gazebo
turtlebot4.

We can further analyze the plot of the trajectory drawn out by our rrt_node on the screen for
further analysis and debugging of our path generated.

We can finally observe the gazebo bot moving towards the path as generated by our
Motion_Planner.

12

Occupancy Grid with Path

Fig 3: Full autonomous system 2

On the figure above, we can analyze the second trial of another coordinate inputted by the user.
We can observe the path being generated and so is the gazebo bot taking its way to reach the
goal via PID_Controller. Below, we can see that the path generated by our rrt_node contains
different coordinate points until it reaches the goal destination.

Figure 1 - 0O X

Occupancy Grid with Path

0.100

0.075

0.050

0.025

0.000

Y (cells)

=0.025

—0.050

-0.075

—0.100

X (cells)

A €3 pQ=
Fig 4: Path generated by rrt_node

13

ubuntu@ubuntu-QEMU-Virtual-Machine: ~/fard_puya_ws/src/TurtleBot

$ ros2 run TurtleBot rrt_node

00
00
00
00
00
00
00

00
Got points to calculate
About to find path
isiting node: (2, 4)
isiting node: [0, 0]
Path found:
[fe, o1, (2, 4), [5, 511
Map after path discovery:
[¢]

(<]
(<]
(<]
(i)
(i)
(<]
(<]

0

» 81, (2, 4), [5, 5]1]
Flattened path [0, 0, 2, 4, 5, 5]
traj_msg.data array('d', [0.0, 0.0, 2.0, 4.0, 5.0, 5.0])
publishing std_msgs.msg.Float64MultiArray(layout=std_msgs.msg.MultiArrayLayout(dim=[], data_offset=0), data=[0.0, 0.0, 2.0, 4.0, 5.0, 5.0])

Fig 5: rrt_node

As we can see on the figure above, our rrt_node takes the input from user coordinates and it
publishes the trajectory and plot to visualize.

§ ros2 run TurtleBot Motion_Planner
Enter the goal pose (x, y):
x: 5

y: 5

Received trajectory: [(©.0, 0.0), (2.0, 4.0), (5.0, 5.08)]
Sending reference point: (0.0, 0.0)

Robot reached the reference point: (0.0, 0.0)

Sending reference point: (2.0, 4.0)

Fig 6: Motion_Planner

As we can see on the figure above, our motion_planner takes the input from user coordinates
and it publishes the start_goal topic to be used by our rrt_node, then further publishes the
trajectory coordinates to reference_pose topic to be used by our PID_Controller.

Fig 7: PID_Controller and rrt_node combined

As we can see on the figure above, our rrt_node and PID_Controller are shown running along
with the path generated by our trajectory plot.

14

Conclusion

Successfully completed the project by following steps given in the lab manual. Learned how to
create a full stack autonomous system that generates a trajectory via rrt_node and then publishes
it to PID_Controller to move gazebo via reference coordinates generated by the path given. This
lab was challenging yet another successful work completed.

15

	Objective
	Experiment
	Explaining Code (Motion_Planner)
	Explaining Code (rrt_node)
	Analysis
	Conclusion

